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Abstract-A tentative measure of the forces tending to cause crack growth-the apparent
crack extension force-is defined within the framework of continuum mechanics. By an
associated fracture criterion initiation of growth may be predicted as well as the direction
of preferred growth. The theory is specialized to elastic, viscoelastic and elastic-plastic materials.
Under specified conditions the apparent crack extension force may be expressed by surface in­
tegrals over the boundary of an arbitrary part of the body for quasi-static deformation and
for steady-state propagation of the crack. For plane deformation and for infinitesimal deforma­
tion under plane stress conditions these surface integrals reduce to path independent line
integrals which include the J integral by Rice[l] and the G integral by Sih[2] as special cases.

I. INTRODUCTION

During the last years much interest has been focused on path independent integrals in
fracture mechanics. Rice[l] introduced the J integral as a measure of a crack extension force
in elastic materials. It applies to infinitesimal deformation under planar conditions. The J
integral generalizes the crack extension force '§ introduced by Irwin[3]. It is also a special case
of the energy momentum tensor defined by Eshelby[4] as a generalized force acting on an
inhomogeneity in an elastic body. The J integral can be used to predict initiation of growth
of a plane crack in its own plane.

Sih[2] discussed dynamic aspects of crack propagation and through an approach similar
to that of Rice derived the G integral which is valid for steady-state propagation of cracks
in elastic materials at small strain.

The objective of this paper is to derive a generalized force measure of the forces tending to
cause crack growth in solids. A crack in a continuous body is described by a material
singular surface or surface of discontinuity. The motion of particles on that surface may be
discontinuous to allow for the crack to extend. With the singular surface a specific surface
energy is associated. During extension of the crack, the surface energy is assumed to be
supplied by mechanical work in the so called cohesive zone by cohesive forces acting between
the separated surfaces. The kinematical properties of the model are formulated in Section 2,
being devoted to continuum mechanical preliminaries. In Section 3 the balance of energy
for simple thermomechanical materials is investigated. It turns out that for the model con­
sidered the concepts of surface energy and cohesive force are equivalent, provided that
heat does not supply the surface energy.

A suitable application of the principle of virtual work in Section 4 and an interpretation
of the contribution from the cohesive zone suggest the definition of the apparent crack
extension force. The apparent crack extension force is expressed by a volume integral over an
arbitrary part of the body containing a crack and by a surface integral over the boundary of
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that part. Introduction of an instantaneous potential renders it possible to transform the
volume integral into a surface integral in case of quasi-static deformation or steady-state
propagation of the crack. The problem of construction of that potential is discussed in
Section 5. With the apparent crack extension force a fracture criterion is associated by
which initiation of growth may be predicted as well as the direction of preferred growth.
Furthermore, the definition of the apparent crack extension force is formally extended to
the case where the crack border is modeled by a singular line.

In Section 6 the apparent crack extension force is specialized to plane deformation and in
case of small strain also to plane stress conditions. The resulting expressions include the J
integral and the G integral as special cases.

2. CONTINUUM MECHANICAL PRELIMINARIES

A body ~ is identified by a reference configuration K(~) in a region VR(~) of a three­
dimensional Euclidean point space. An arbitrary point X in I'R(~) is referred to as the
particle X of the body. The boundary of VR(~) is denoted by OVR(~) and its outward unit
normal by DR' The reference configuration is, for convenience, assumed to be a natural
state, i.e. the stress corresponding to K is zero. This configuration will also be referred to as
the undeformed configuration.

The motion of the body ~ is given by

x = X,,(X, t), (2.1)

where x is the place in the spatial configuration occupied by the particle X at time t.
The concept of singular surface, treated extensively in [5], will be employed as a model of a

crack in a solid body. The volume VR(.'?J) of some part [JjJ of the body in the reference con­
figuration is separated into UR + and VR - by a surface OR as shown in Fig.!. The boundary
OUR is separated into OUR + and OUR -.

Fig. I. Reference and spatial configurations of a body containing a crack.

The surface J R is ass umed to be material. i.e. the surface is described by an equation of
the form

G(X) = O. (2.2)

The motion of a particle X onJR may be discontinuous and consequently mapped into
different points x+ on 0+ and x- on :J-. The unit normal vector DR at the particle X on
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OR pointing into the 'VR + region is mapped into n+ at x+ and into n- at x-. For particles
within VR + and VR - as well as for particles on the boundary OVR the motion is continuous.

The one-sided limits of any sufficiently smooth quantity P is denoted by

'P± = lim 'P(x, t) for x E (2.3)
x-+x±

and the jump of P across the surface is denoted by

[P] = 'P+ P-. (2.4)

If [P] 1= 0, the surface OR is said to be singular with respect to 'P.
Anticipating the concept of cohesive zone to be defined in Section 3, the definition of the

surface 0 R will now be modified. The part of the surface that constitutes the fully opened
crack, i.e. the crack outside the cohesive zone, will henceforth be included in the boundary
OVR with the normal vector nR directed outwards. Accordingly, boundary conditions pre­
scribed on the fully opened crack could be more feasibly expressed. The cohesive part of
the crack is denoted by OcR'

The classical fracture mechanical theories may be considered as limit cases where the
cohesive zone becomes a singular line propagating in the material, splitting each particle X
in its progress into two particles X+ and X- which are mapped into points ,x+ and x-
respectively. ,

For simple materials the local motion in the neighbourhood of a given particle is described
by the deformation gradient

F =Vxx,

where V is the gradient operator.
Continuous motion requires that the positive quantity

J =det F

(2.5)

(2.6)

does not approach zero or infinity.
The deformation of a material volume element dVR in the reference frame into dv in the

spatial frame is given by

This equation implies the relationship

dv = Jdt'R .

PR =Jp

(2.7)

(2.8)

between the mass densities PR and P in the material and spatial configurations respectively.
The deformation of a material vector-area DR dSR is

Dds =J(F-1fnR dsR , (2.9)

where (F-1)T is the transposed inverse ofF.
The stress vector t acting upon a material surface with the normal vector 0 is given by

t=To,

where T is the Cauchy stress tensor.
Introducing the first Piola-Kirchhoff tensor TR, defined by

TR =JT(F-1f,

(2.10)

(2.11)
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the stress vector tR is given by
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(2.12)

where DR is the surface normal in the reference configuration. The stress vectors t and tR are
related by

(2.13)

(2.14)

where ds and dSR are the magnitudes of a material surface element in the spatial and material
configurations respectively.

The body is subjected to a field of assigned body forces b and surface tractions t (or tR ) on
the boundary ov.

A body in motion and a corresponding system of forces constitute a dynamical process,
if the balance equations for momentum and moment of momentum are satisfied. For
regular parts of the body these are equivalent to Cauchy's laws of motion:

div T + pb = pa,

T=TT,

or

DivTR + PRb =PRa,

TRFT=FTR
T,

(2.15)

(2.16)

where div and Div are the divergence operators with respect to x and X respectively, and
a =xis the particle acceleration. The balance of momentum and moment of momentum over
the singular surface <1 is given by

[TR]nR = 0,

[x] X tR ± = O.

Since the relationship between the deformed surface elements ds+ and ds" is rather com­
plicated, it is not advantageous to use Cauchy's stress tensor in this regard.

Especially for small strains it is convenient to employ the displacement vector u defined by

u=x-X

in a common frame and the displacement gradient

H = Vxu.

(2.17)

(2.18)

The Green-St. Venant strain tensor E may be defined in terms of the displacement gradient
as

E = t(H + H T + HTH).

Omitting the quadratic term, (2.19) reduces to the infinitesimal strain tensor

E =HH +HT
).

Finally, we introduce a bracket notation to be used frequently

A [l]B = [B]l,

A l[B] = B[l],

(2.19)

(2.20)

(2.2l)
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which should be interpreted according to

Ak1 = L ijk1 Bij,

A ij = L ijk1 Bk1
,
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(2.22)

i.e. depending on the position of the bracket, summation should be carried out with respect
to each appropriate index consecutively, beginning with the first one, or in inverted order
beginning with the last index.

3. BALANCE OF ENERGY OVER COHESIVE ZONES

An arbitrary part [JJ of a body :JU containing a crack represented by a singular surface
() RE I'R([JJ) is considered. With this singular surface and each dynamical process is, following
Griffith[6], associated a surface energy I: defined by

(3.1)

where (JR is the specific surface energy referred to the reference configuration and OR([JJ)
denotes the part of the surface that is contained in VR([JJ).

Including the surface energy, the general balance equation for energy for simple, thermo­
mechanical materials takes the form

£+1:+K =M+ Q.

Here, E is the internal energy defined by the specific internal energy c through

E([JJ) = f cPR dvR·
VR(iJ')

With v = xdenoting particle velocity, the kinetic energy K is

K([JJ) = -2

1

f v· VPR dvR·
VR(&')

The mechanical power M of the assigned forces is

M([JJ) = f v . bPR dVR +f v . tR dSR •
VR(&') iiVR(&')

The heat power Q is defined by

(3.2)

(3.3)

(3.4)

(3.5)

where q is the specific heat absorption and h is the heat flux vector.
Change of surface energy is assumed to be restricted to a part of the singular surface {1 R

which is called the cohesive zone OcR' Accordingly, substitution of (3.1 and 3.3-3.6) into
(3.2) yields

f O"RdsR+f (s-v'(b-a)-q)PRdvR-f (v·TR-JF-1h)·nRdsR=O.
JcR(&') VR( &') ii"R(&')

(3.7)
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Green transformation of the surface integral over the boundary OUR yields in VIew of
(2.15)1

J (f·PR - rrR]F - qPR + J div h) dVR + J (o-R - [v . TR - JF-Ih]) . DR dSR = O.
UR("') JcR("')

(3.8)

Decreasing the volume U R(&l') to zero while .JcR(&l') is kept constant results in

(3.9)

which is the energy balance over the singular surface.
It is obvious that the surface energy in general may be contributed by heat flux as well as

by mechanical work. To proceed, we make the constitutive assumption that the surface
energy is not affected by the heat flux h. Thus, (3.9) may be separated into one mechanical
and one thermal part. Furthermore, the part &l' is arbitrarily chosen. On that account and
by aid of (2.16) we conclude that

(3.10)

and

(3.11)

where TR is arbitrarily TR+ or TR- .
For the surface energy to increase during crack opening, it is necessary to assume the

existence of cohesive forces acting between the separated surfaces in the vicinity of the crack
tip. This part of the crack is the cohesive zone "cR' The equation (3.11) expresses in general
terms the equivalence of the concepts of surface energy and cohesive force.

4. DEFINITION OF THE APPARENT CRACK EXTENSION FORCE

The principle of virtual work will be applied to an arbitrary part &l' of a body containing
a crack which is represented by a singular surface with a finite cohesive zone. The appro­
priate form of the principle of virtual work in absence of internal constraints is

(4.1)

where <5x is an arbitrary field. As before. CI'R(&l') includes the non-cohesive part of the crack.
Hence, we may select the field

(4.2)

where IR is an arbitrary but fix unit vector in the reference configuration.
By aid of (2.16 and 2.18) the virtual work at the crack tip for the given variation becomes

(4.3)
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Introduction of (4.2) and (4.3) into (4.1) accounting for the balance of momentum (2.15)1
yields

Before developing the theory further, we turn to the interpretation of (4.3). Suppose that
the possible growth of the crack at time t is to take place along the whole crack front
within :?J with the velocity

(4.5)

in the direction IR referred to the undeformed configuration. The surface normal DR on
OcR(:?J) at each particle X within the cohesive zone and the vector lR are supposed to be
perpendicular to each other. It is also assumed that the shape of the cohesive zone in the
current configuration remains constant during the growth.

Then, the velocity of particles at the surface of the cohesive zone in a common frame is
given by

(4.6)

where w is the propagation velocity of the crack front in the spatial configuration. That
velocity may differ from W R due to a superposed rigid body motion.

The velocity jump appearing in (3.11) becomes

(4.7)

On account of (4.7), comparison of (3.9) and (4.3) gives at hand that the left hand side of
(4.3) may be interpreted as the rate of change of the surface energy L(:?J) per unit length of
growth in the direction of IR .

Since (4.3) is due to a virtual variation, however, it only expresses the energy transformed
into surface energy per unit length of virtual growth. Thus, it may be interpreted as a
generalized force measure of the forces tending to cause crack growth. Guided by this
particular generalized force interpretation of the conditions at a crack tip, we proceed to the
definition of a tentative measure which is obtained from the remaining terms of (4.4).

The apparent crack extension force in the direction IR is defined by

Iln(:?J) = IR. f ([TR1V'x F - HT(b a)PR) dl1R -IR. f HTtR dsR· (4.8)
vnU") ""'nUll)

In attempt to supersede difficulties due to poor knowledge of the conditions in the vicinity
of a crack tip, it is advantageous to investigate circumstances under which the volume
integral in (4.8) may be transformed into a surface integral over the boundary OVR of
the control volume,

In special cases to be discussed in Section 5 it is possible to introduce an instantaneous
potential rc at each particle X in I'R(:?J) at time t which satisfies

(4.9)

The instantaneous potential rc is a unique and continuous function of X for each given
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deformation history up to time t. Thus, the Green transformation applies to the volume
integral of PR Vx n provided that

PR(X) = PR = const. (4.10)

throughout VR(.qJI). Since it is assumed in the above interpretation of the force that IR . DR = 0
at the cohesive zone OcR' and since the material properties are continuous on the surface
OR in front of the cohesive zone, the contribution from the integral of PR nOR over the
surface OR is equal to zero, and (4.8) assumes the form

IIR(&» = -IR .J HT(b - a)PR dVR + IR . J (PR nOR - HTtR) dsR· (4.11)
VR(9') CVR(9')

The remaining volume integral can be generally dealt with in two special cases. For quasi­
static deformation we put

and (4.11) becomes

b=a=O (4.12)

(4.13)

in direct notation and component notation respectively. The semicolon denotes total
covariant derivative.

The other tractable case is steady-state propagation of the crack. Suppose that the crack
propagates under steady-state conditions with the constant velocity WR according to (4.5)
referred to the undeformed configuration. Then the velocity of each particle apart from a
possible superposed rigid body motion is given by the relation

v = -HwR = -wHIR' (4.14)

Furthermore, the material time derivative of any sufficiently smooth quantity qJ defined at a
particle X is given by

'¥ = -w(VXqJ)IR ·

Combination of (4.14) and (4.15) readily yeilds

IR . H Ta = tw2Vx(lR • HTHlR)IR'

On the assumption of b = 0, (4.11) reduces to

IIR(g!') = IR . J ((n + tw21R . HTHIR)PR DR - HTtR) dsR ,
C"R(9')

According to the relation

it is only necessary to require that PR is constant in the direction IR of propagation.

(4.15)

(4.16)

(4.17)

(4.18)
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In the case of steady-state propagation of a crack, all requirements justifying the inter­
pretation of (4.3) as the rate of change of the surface energy per unit length of growth are
fulfilled. Thus, (4.17) constitutes a balance equation for those parts of the energy that are
balancing the surface energy.

The resulting equations (4.13) and (4.17) for the apparent crack extension force in the
direction lR may be transformed into the spatial configuration by aid of (2.9) and (2.13):

IIR(f!J) = lR . f ((n; + tw21R . HTHIR)pFTn - HTt) ds,
ev(go)

(4.19)

where fIR for quasi-static deformation is obtained for w = O.
For infinitesimal deformation no distinction has to be made between the deformed and

the undeformed configurations of a body. In such cases (4.19) may be written

11(f!J) = I· f «(n; + tw21 . HTHI)pn - HTt) ds,
c,,(go)

11(f!J) = Ii f «(n; + tw2Ui,k ui ,Ilk ll)pn j - ui
,j t) ds,

cv(go)

where a comma denotes covariant derivative.
The main reason for deriving the surface integral representations for the apparent crack

extension force is, as already indicated, the relative lack of knowledge of the conditions at
crack tips. For prediction of initiation of crack growth the theory may be developed further.
Suppose that we know the shape of the fully opened crack but have only rude conceptions
of the cohesive zone. Then, we may proceed as follows.

The apparent crack extension force IIR may be computed from any appropriate equation
as a function of lR' Then the unit vector lR for which IIR reaches its maximum value may
be determined. As a hypothesis this direction may be postulated as the direction of preferred
crack growth. Growth in this direction will occur when the corresponding force reaches a
critical value Ie.

In finite element applications still another interpretation may be utilized. Ahead of the
crack tip the elements may be arranged in a fan-shaped configuration with the elements
located in one narrow sector modeling the cohesive zone. In this case the direction lR of the
cohesive zone will be well-defined. On comparison of different directions lR for a given load
on the body, that giving maximum value of the apparent crack extension force can be
determined. The direction thus obtained may be considered, by hypothesis, to be the
direction of preferred growth of the crack.

We remark, in passing, that a force vector interpretation of the vector measure that is
obtained by omitting IR in the expressions for the apparent crack extension force is ques­
tionable, because the vector measure would be defined in the reference configuration instead
of in the actual configuration of the body. Rather than being considered as a force acting in
the direction of preferred growth of a crack, the apparent crack extension force IIR should
be regarded as a generalized force associated with growth in the direction lR'

IJSS Vol. 10 No. 12-£
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The apparent crack extension force at singular crack borders

Concentrating on singular crack borders, we assume that the displacement gradient
exhibits singular behaviour according to

H = O(Ra
),

Hl tR = 0(1),

-I < IX < 0,
(4.21)

where R is the distance in the reference configuration between the considered particle and the
singular line t R, and ItR is the unit tangent vector of t R in the normal plane of the line that
contains the considered particle. The orders of magnitude refer to the Euclidean norm of the
functions.

The second condition (4.21h is necessary for a one-to-one mapping of the singular line
t R onto t in the spatial configuration, whereas the first condition is only sufficient.

In presence of such singularities regarded functions are not defined on the singular line.
Accordingly, the Green transformation does not apply to (4.8). However, we may define the
apparent crack extension force at the part t R(&P) of a singular crack border contained in the
part &P of a body through (4.13) and (4.17) with the surface of integration chosen as
the limit surface

atR(&P) = lim OR(tR(&P)),
D-->O

(4.22)

where OR(tR(&P)) is a smooth surface that surrounds the part t R(&P) of the singular line and
D is an upper bound for the distance between particles located upon that surface and the
singular line.

Since the Green transformation applies to any region which does not contain a singular
crack border, it is readily shown that the formulae for fIR thus obtained are independent
of the choice of integration surface as long as the surface completely encloses the crack
border. That is, the integration surface should be homotopic to that defined by (4.22).

The apparent crack extension force may be computed per unit length of the border at any
point X on a smooth singular border line through the line integral

in the case of quasi-static deformation.
Here, dCR is the arc element of the integration path atR(X) defined by

atR(X) = lim CR(X),
D-->O

(4.23)

(4.24)

where CR(X) is a closed path surrounding the singular line in the normal plane of t R at X in
which plane also nR is situated.

Further, the arbitrary unit vector InR has been restricted to the normal plane of the crack
border at X which is due to the condition (4.2Ih and to the fact that DR is perpendicular to
the tangent of the singular line.

In the fracture hypothesis proposed it may be assumed that the critical value of the
apparent crack extension force per unit length of the border as given by (4.23) is a material
parameter possibly depending on the temperature.
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(5.2)

5. CONSTITUTIVE THEORIES FOR THE MATERIAL

SO far we have not discussed the problem of establishing the instantaneous potential 1t

for a given material. This potential with the desired property (4.9) is generally expressible
only for special classes of material under certain specified conditions.

Elastic materials

For a homogeneous elastic material there exists a global free energy function ljJ which
may be expressed as a unique function of the current value of the deformation gradient F,
i.e. ljJ = !/i(F). The first Piola-Kirchhoff stress tensor is given by

TR=PRVF!/i. (5.1)

Introduction of (5.1) into (4.9) shows that !/i may be chosen for 1t.

In the case of homogeneous thermo-elastic materials, the free energy function is given by
ljJ = liJ(F, 8) where 8 is the temperature. The material gradient of ljJ is

- oliJ
VxljJ = [VFljJ]VX F + 08 Vx 8.

Thus, liJ is appropriate for 1t only under isothermal conditions.
As far as infinitesimal deformation of linearily elastic materials is concerned, PR 1t may be

written in terms of stress and strain. Irrespective of the symmetry properties of a given
material its constitutive equation is of the form

T = C[E],

where C is the fourth-order elasticity tensor.
The instantaneous potential becomes

PR 1t =tC[E ® E] = tT[E],

where ® denotes tensor product.

(5.3)

(5.4)

Viscoelastic materials

Materials with fading memory, or viscoelastic materials, are materials for which the
Helmholtz free energy is given by a constitutive functional

OCJ

ljJ(t) = ljJ (Ft(s), 8t(s»
s-->O

(5.5)

determined by the total history (Ft
, 8t

) of the deformation gradient and the temperature
where

Ft(s) = F(t - s)

8t(s) = 8(t - s)
for 0::;; s < 00. (5.6)

The functional (5.5) obeys the assumption of fading memory which is the assumption that
the deformations and temperatures occurring in the distant past have less influence on the
current state of the material than those occurring in the recent past.

A general theory of materials with fading memory was given by Coleman[7]. The mathe­
matical interpretation of the assumption of fading memory that was investigated by Coleman
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yields the constitutive equation for the stress tensor in the form
00

T R = PR D F l/J (F t
, if t

).
s~ 0

(5.7)

(5.9)

The stress tensor is given by the gradient of the free energy functional with respect to the
current value of the deformation gradient.

It is, in general, not possible to deduce a globally valid instantaneous potential n from
(5.7). A special case of interest may, however, be derived directly. Restricting the study to
isothermal conditions, we consider a body which has been in equilibrium in a preferred
reference state up to time to. At that time a constant deformation is applied to the material.
The functional (5.5) then reduces to a function and (5.7) becomes

T R = PR VFlf/(F, t - to) for t> to (5.8)

which corresponds to a time dependent elastic material (see Ref. [8]).
We conclude that under isothermal conditions it is possible to compute the apparent

crack extension force at stress relaxation with If/ chosen for n. For crack problems stress
relaxation may not be a very realistic case. However, two important particular cases may be
read off from the derived result: the material response immediately after application of the
load, and the equilibrium response reached after long time of relaxation. In the terminology
introduced by Leigh[9] the corresponding equations are called the rapid-deformation
elastic equation and the slow-deformation elastic equation respectively:

T R = PR VFlf/(F, 0),

T R = PR VFlf/(F, 00).

These equations may be considered as the extremes of viscoelastic behaviour and, con­
sequently, they may be of interest in search for bounds for the apparent crack extension
force. The critical crack extension force may, of course, be different too for the two extreme
behaviours of the material. Analogous to the case of elastic materials, the functions If/(F, 0)
and If/(F, 00) may be chosen for n in these cases.

For linearly viscoelastic materials obeying a constitutive equation of the form
t I

T = J G(t - r)[E(r)] dr, (5.10)
-00

where G is the fourth-order stress-relaxation tensor, the rapid-deformation elastic equation
and the slow-deformation elastic equation assume the form

T = G(O)[E],

T=G(oo)[E],
(5.1I)

where G(O) is called the rapid-deformation elasticity tensor and G(00) the slow-deformation
elasticity tensor.

Thus, for infinitesimal deformation PR n may be chosen according to (5.4)z with the stress
tensor given by the appropriate equation (5.11).

Elastic-plastic materials

Elastic-plastic materials exhibit rate-independent effects which do not enable us to find a
general class of deformations for which an instantaneous potential n exists being single­
valued function of the deformation gradient. Thus, it is in general not possible to apply
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the s~rface integral formulae for the apparent crack extension force to elastic-plastic
materials.

For a particular constitutive theory it is possible to proceed a little further. Consider the
elastic-plastic theory for small strains with the infinitesimal strain tensor decomposed into
one elastic and one plastic part:

(5.12)

It is assumed that the stress tensor in every point is given by a global elastic equation of the
form (see Ref. [10])

T = crEe].

The apparent crack extension force then takes the form

Ilq») = I· I (-!T[Ee]o - HTt) ds + I· I [TJVx£P dv
ov(&» v(&»

(5.13)

(5.14)

for quasi-static deformation. The corresponding formula for steady-state propagation is
quite similar.

The usefulness of (5.14) and corresponding equation for steady-state propagation is
probably restricted to numerical calculations.

To the author it does not seem to be possible to extend the derived theory for elastic­
plastic materials to a constitutive theory which includes finite deformation. The possibility to
describe elastic-plastic materials with aid of plastic potentials which are unique functions of
the deformation gradient remains. Such theories are, however, actually theories for elastic
materials and will not be discussed here.

6. PLANE DEFORMAnON

In this section the three-dimensional formulae for the apparent crack extension force will
be specialized to the case of plane deformation. On that account, consider a body with
a Cartesian frame (X, Y, Z) in the reference configuration which is deformed in the
X-Y-plane.

The body is of unit thickness in the Z-direction and contains a through crack with the
surface normal everywhere parallel to the X- Y-plane as indicated in Fig. 2. The arbitrarily
chosen surface OUR enclosing the crack tip has an outward unit normal DR everywhere parallel
to the X- Y-plane. The curve CR is the projection of OVR in the X- Y-plane and CR is oriented

Fig. 2. Integration contour for the apparent crack extension force at plane deformation.
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in such a way that upon traversing CR the volume VR is to the left. Analogous to the general
case, the fully opened crack is included in CR •

The area-vector DR dSR may be written

(6.1)

where iz is the unit vector in the positive Z-direction and mR is the positively directed tangent
vector of CR given by

mR = dX i x + d Y i y ,

the signs of dX and d Y being suitably chosen.
The possible growth direction lR is

lR = cos ('J. i x + sin ('J. i y .

(6.2)

(6.3)

(6.4)

(6.5)

On the assumption that the displacement vector u depends explicitly only on the material
coordinates, the total covariant derivative Ui.~ reduces to the partial derivative of ui with
respect to X~.

Hence, the equations (6.1)-(6.3) yield

lR . DR dSR = (cos ('J. d Y - sin ('J. dX) dZ,

T ( aUi aui )lR . H tR = cos ('J. ax + sin ('J. aY tRi •

Let I~ denote the apparent crack extension force in the direction ('J. and CR the arc length.
Then, substitution of (6.4) into (4.13) yields

J ( ( au. au.) )
I~ = 'R PR n(cos ('J. d Y - sin ('J. dX) - cos ('J. a; + sin ('J. a; tRi dCR •

The apparent crack extension forceI~ may be computed in the spatial frame as well. Let the
spatial frame be a Cartesian coordinate system (x, y, z) not necessarily coinciding with
the (X, Y, Z) system, but, for the sake of simplicity, the x-y-plane should be the plane of
deformation. The surface av enclosing the crack tip is chosen in the same way as aVR with
its projection in the x-y-plane denoted by c.

The equations (6.1) and (6.2) should be replaced by similar ones with the subscript R
deleted and x, y and z substituted for X, Y and Z, respectively. Then, the equations cor­
responding to (6.4) read

lR . FTn ds = (cos ('J.~ + sin ('J. ax) dy dz - (cos ('J. ay + sin ('J. :y) dx dz,ax ay ax uY

Accordingly, (4.19) with w = 0 becomes

J( (( ax ax) ( ay . ay) )
I~ = r pn cos ('J. ax + sin ('J. aY dy - cos ('J. ax + sm ('J. aY dx

( au, . aui ) d))- cos ('J. - + sm ('J. - t· C •ax ay I

(6.6)

(6.7)
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In the case of infinitesimal deformation, and with coinciding coordinate directions (ix = ix,
iy = i y and i z = i z ), (6.5) and (6.7) are identical.

On consideration of steady-state propagation of a crack, it is suitable to choose coinciding
Cartesian coordinate systems in the two configurations. The crack is assumed to propagate
in the positive X-direction with the velocity w. In that case (4.17) becomes

1= f.R ((1t + tw2 :~ :~ )PR d Y - :~ tRi dCR)'

The spatial form of this equation is

J(( 2 au; aui) aUi )I =. 1t +}W - - P dy - - t· dc .
< ax ax ax I

(6.8)

(6.9)

The formulae (6.5) and (6.8) for the apparent crack extension force are valid also for
generalized plane deformation, i.e. plane deformation combined with a uniform stretch
normal to its plane. If divided by the stretch, (6.7) and (6.9) are likewisely valid. For infini­
tesimal deformation the validity of the equations obtained is generalized to conditions of
plane stress and antiplane strain.

For a crack along the X-axis (6.5) reduces in the case of small strain and with rx = 0 to the
J integral by Rice[l]. The G integral by Sih[2] is included in (6.8).

7. FINAL REMARKS

The proposed fracture theory is based upon the main idea that the cohesive zone of a
crack evolves in a favourable direction during loading of a body. Unfortunately, there
exists no sufficiently developed continuum mechanical theory which could provide a definite
meaning of that favourable direction. Because of its physical interpretation it seems reason­
able to the author that the apparent crack extension force could be contemplated as a
governing force for crack growth. Being aware of the limitations of the generalized force
concept defined, we can only consider the proposed theory as a preliminary one. Neverthe­
less, it has the advantage of being simple to apply in engineering design. It also includes
theories which have proved useful for prediction of initiation of crack growth within their
ranges of applicability.

The theory has been applied by Strifors[ll] to special fracture problems for isotropic,
linearly elastic materials. For instance, an infinite plate with a plane through crack subjected
to a uniform tensile load remote from the crack has been considered. The values of the
apparent crack extension force and direction of preferred growth have been calculated for
different orientations of the crack. On comparison of theoretical predictions with experi­
mental results for polymethyl methacrylate (PMMA), it turns out that the prediction of
critical force is good for virtually all crack orientations, whereas the growth direction is
satisfactorily predicted only for cracks oriented favourably for growth.

It ought to be emphasized that the apparent crack extension force is a measure offorce and
in general not a measure of the energy available for extension of cracks. This remains true
for J since it is a special case ofIIR' Irwin[3] has pointed out very clearly the generalized
force interpretation of the forces tending to cause crack growth. In the case of steady-state
propagation of cracks, the distinction between the concepts of crack extension force and
energy release rate becomes needless as a consequence of the heavy kinematical demands
inherent in the steady-state condition.
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An important question which has been discussed in connection with generalized force
measures is whether an actual growth will be stable, i.e. controllable by the applied loads,
or unstable. Since there is in general, no correlation between the apparent crack extension
force and the energy available to supply the surface energy at growth, it is clear that a
condition/'R max <Ie only may furnish a sufficient condition for stability.
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A6cTpaKT - B paMKax MexaHI1KIf CrrJIOIIlHOii Cpe.l1bI orrpe.l1eJIJleTCJl rrpe.l1BaplfTeJIbHaJl Mepa
yCJlJIlfii, JlMelOW:IfX TeH.l1eH/..lJlIO Bbl3bIBaHIfJl pocTa TpemlfHbl - OqeBH.l1HaJl CHJIa pacrrpocTpa­
HeHJlJI TpeW:HHbI. Ha oCHOBe rrpHCOe.l1HHeHHOro KpJlTepJlJl Jl3JIOMa, MOJKHO rrpe.l1CKa3aTb KaK
B03HlfKoBeHHe pocTa, TaK JI HarrpaBJIeHHe rrpelfMyw:ecTBeHHoro pocTa. DpJlcrroc06JIHBaeTCJl
TeOpJlJl K yrrpyrHM, BJl3KoyrrpyrHM JI yrrpyro-rrJIaCTlfqeCKJlM MaTepHaJIaM. Jl:JIJI 3a,l1aHHblX yCJIO­
BJIM OQeBJI.l1HaJl CJlJIa pacrrpoCTpaHeHHJI TpeW:IfHbI MOJKeT 6bITb BblpaJKeHa rroBepXHocTHblMH
JlHTerpaJIaMJI ITO rpaHJI/..le rrpOJl3BOJIHOii '1aCTIf TeJla, .l1JIJI KBa3H-CTaTJI'IeCKOii .l1e!jJ0pMa/..lIfH JI
.l1J1J1 CTa/..lHOHapHoro pacrrpoCTpaHeHIfJl TpemHHbI. Jl:JlJI rrJlocKoii .l1e!jJopMaUJlIf JI .l1JIJI JlH!jJHHJI­
Te3HMaJlbHOii .l1e!jJ0pMaUJlJl B YCJlOBJlJlX rrJlOCKOrO HarrpJlJKeHJlJI 3TH rroBepXHoCTHble JlHTerpaJlbI
COKpamalOTCJI K He3aBJlCHMblM JIHHeiiHblM JlHTerpanaM rro KOHType. 0HIf 3aKJIIOQaIOT, B
KaQeCTBe crreUJlaJlbHbIX CJlYQaeB, JlHTerpaJl Paiica H JlHTerpaJl CJlra.


